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A. OBJECTIVES 

GPS radio occultation (RO) measurements have been known to possess characteristics 
that make them particularly suitable for climate benchmarking [1]. In this study, we explored the 
application of GPS RO data in climate model testing. In order to facilitate comparisons with 
climate models, a Bayesian method was first applied to interpolate the quasi-randomly 
distributed RO measurements onto regular latitude–longitude grids. The 8-year continuous time 
series of RO measurements from the CHAllenging Minisatellite Payload (CHAMP) and 
Constellation Observing System for Meteorology, Ionospheric, and Climate (COSMIC) satellite 
missions were calculated and compared with the European Centre for Medium-range Weather 
Forecast (ECMWF) reanalysis and the climate models from the Fourth Scientific Assessment of 
the Intergovernmental Panel for Climate Change (IPCC AR4). 

B. APPROACH AND RESULTS 

1. Data Description 

To obtain over 8 years of continuous RO measurements, we used data from both 
the CHAMP (April 2001–August 2008) and COSMIC (also known as FORMOSAT-3, June 
2006–present) missions. The CHAMP mission yielded approximately 150 profiles per day over 
the globe, with local time sampling that repeats approximately every 4 months. With six 
satellites capable of performing both rising and setting occultations, COSMIC data provided an 
order-of-magnitude improvement in throughput as well as excellent diurnal cycle sampling. The 
period of overlap between the CHAMP and COSMIC data allowed us to assess sampling error 
from the more limited coverage of the CHAMP data. 

The CHAMP and COSMIC data were retrieved at JPL [2]. Each occultation 
yields a vertical profile of refractivity with high vertical resolution (approximately 200 m up to 
the lower stratosphere). The refractivity can be expressed as a function of temperature, pressure, 
and water vapor. By neglecting water vapor, the temperature and pressure can be obtained 
directly from the hydrostatic equation. The temperature and pressure thus derived are referred to 



 
 

  
 

  
 

 
 

 

 
   

as the “dry” temperature (Tdry) and “dry” pressure (Pdry). They differ from the physical 
temperature and pressure only when water vapor is abundant (below about 8 km altitude in the 
tropics). 

2. Data Gridding with Bayesian Interpolation Method 

To perform climate averaging with the GPS RO data and to compare with climate 
models, it is convenient to first interpolate the quasi-randomly distributed measurements onto a 
regular latitude–longitude grid. In this study, the gridding was carried out within the framework 
of Bayesian interpolation [3]. The Bayesian interpolation method uses a set of basis functions to 
fit irregularly sampled data with unknown noise characteristics and represents a generalized least 
χ2 method. What makes this approach Bayesian is its use of a regularizing function that is 
weighted optimally against data misfit to resolve structures in the data without overfitting. For 
interpolation on a sphere, we used spherical harmonic functions as the basis functions. The 
regularizer functions were chosen to be simple power laws that assigned larger penalties to 
spherical harmonics with larger degrees and non-zonal orders (m ≠ 0) [3]. 

Figure 1 illustrates an example of the Bayesian interpolation of GPS RO data. In 
this example, the temperature data at 10 km height level from January 1–4, 2007, were fitted 
with spherical harmonic functions up to degree 8. Having obtained the fitting coefficients, the 
temperature at any latitude and longitude can be easily and quickly computed. Here, the 
interpolated temperature was calculated on a 10 deg × 10 deg latitude–longitude grid. Figure 1a 
shows the interpolated COSMIC temperatures in contour, while Figure 1b shows the estimated 
error from the Bayesian interpolation that characterizes the global misfit. The actual locations of 
the measurements are shown in dots. Note that the estimated error is larger in the tropics due to 
the smaller number of measurements present in the tropics. However, regional variability is not 
accounted for in this formulation, so the error tends to be overestimated in the tropics where the 
synoptic variability is lower. Figure 2 shows the zonal averages from COSMIC and CHAMP for 
the same period. The zonal averages can be easily calculated by summing over the spherical 
harmonic functions with zero order. It can be seen that due to the tenfold increase in the 
COSMIC measurements, the estimated interpolation error is smaller by a factor of about 3. 

To calculate monthly averages, we first divided the data into bins of ~3 days each. 
We note that bins with too few days would have an insufficient number of measurements that 
caused overfitting, while bins with too many days would have increased natural variability that 
caused underfitting. This suggests that there should exist an optimal bin size for a given sampling 
density. In practice, however, we found that the results were not very sensitive to the choice of 
the bin size. We applied the Bayesian interpolation for each of the 3-day bins and interpolated 
the measurements to a gridded dataset. The gridded data from each of the bins within a month 
were then averaged at each grid point to obtain a monthly average. To better quantify the 
sampling error, we performed sampling analysis using the ECMWF gridded data. The ECMWF 
data were first subsampled at the GPS RO times and locations. The subsampled data were then 
interpolated and compared against the derived monthly average obtained with the full ECMWF 
data. For COSMIC sampling density, the global temperature RMS difference was found to be on 
the order of 0.3 K. 



  
 

 
 

 
 

  

 
 

  
 

 
 

3. Time Series Analysis and Comparison with Climate Models

 The time series of the Pdry from GPS RO was analyzed and compared with 
climate models. The change in the log(Pdry) is directly related to the change in geopotential 
height [1]. As such, it represents the layer-averaged temperature below a particular altitude. 
Figure 3 shows the monthly zonally averaged Pdry at 10 km altitude for 50 N and 50 S latitudes.  
The dry pressure exhibits clear annual cycles that correspond to the warming and cooling of the 
troposphere. Figure 3 also shows the monthly Pdry anomalies with the annual cycles removed. 
During the period when data from both CHAMP and COSMIC were available, the results agreed 
well with each other, despite the fact that COSMIC had about 10 times more profiles. This 
suggests that CHAMP provided adequate sampling for studying monthly zonal means. For 
comparison, corresponding results from ERA-interim are also shown in Figure 3. The agreement 
between GPS RO and ERA-interim is quite good. 

We performed linear regression analysis on the log(Pdry) anomalies in the period 
of 2001–2009 (CHAMP from 2001–2006 and COSMIC from 2007–2009). Figure 4 shows the 
linear trends obtained from GPS RO data for 50 N and 50 S at 10 km height level and how these 
trends compare with ERA-interim and an ensemble of IPCC AR4 climate models with SRES 
A1B greenhouse gas forcing scenario. These results show that (1) there are broad agreements 
between GPS RO, ERA-interim, and most of the models, and (2) the trends obtained this period 
are not statistically significant. 

Figure 5 shows the global annual average of log(Pdry) from 2002–2009 at 20 km 
height level. The approximate pressure scale height of 5000 m has been multiplied to convert 
log(Pdry) to layer thickness (cf. Eq. 6 of [1]). In addition to simple global averaging, we have 
also computed an “optimized” average using the optimal fingerprinting technique ([1] and 
references therein), where the climate models had been used to infer the natural variability. In 
this case, there appears to be very little difference between the simple and optimized averages. 
To relate the changes in the troposphere thickness with surface temperature, we included the 
Hadley Center/University of East Anglia Climate Research Unit (HadCRUT3) [4] temperature 
data record from 2000–2009 in Figure 5. These results showed an interesting divergence between 
the troposphere thickness and surface temperature in the last few years. Further analysis on the 
GPS RO interpolation and sampling errors should be carried out in the future to assess the 
statistical significance of such differences. 

C. SIGNIFICANCE OF RESULTS 

This study demonstrated the potential values of GPS RO in climate model testing. We 
developed and implemented an approach to grid the GPS RO retrieved profiles to facilitate 
comparisons with models. The tools and analyses developed in this study will be useful not only 
in climate model testing but also in delineating the sampling accuracy and characteristics of GPS 
RO missions that are currently in planning, such as CLARREO and other National Research 
Council Decadal Survey missions, where NASA/JPL is expected to be actively involved. 
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H. FIGURES
 

(a) Interpolated temperature [K] (b) Estimated interpolation error [K] 

Figure 1. Bayesian interpolation of COSMIC temperature data at 10 km from January 1–4, 
2007. (a) Contours from the interpolated temperature. The dots refer to the individual occultation 
locations and temperature values with color scales shown on the right. (b) Estimated 
interpolation error. The dots refer to the individual occultation locations. 

(a) Zonal mean from COSMIC [K] (b) Zonal mean from CHAMP [K] 

Figure 2. Zonal averages of GPS RO temperature from (a) CHAMP and (b) COSMIC at 10 km 
from January 1–4, 2007. Solid lines represent the interpolated temperatures and dashed lines 
represent the estimated interpolation errors. Dots show the actual occultation data. 
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Figure 3. Time series of monthly zonal means of the dry pressure at 10 km obtained from 
CHAMP (April 2001-August 2008 with July 2007 missing) and COSMIC (June 2006–Dec. 
2009) at (a) 50 N latitude and (b) 50 S latitude. For comparison, the corresponding results from 
ERA-interim are shown. Lower panels show the monthly dry pressure anomalies obtained by 
removing the annual cycles. 

(a) (b) 

Figure 4. Linear trends in log(Pdry) at 10 km height over 2001–2009 from GPS RO data 
compared with ERA-interim and IPCC AR4 climate models. (a) 50N; (b) 50 S. Solid black lines 
denote the trends, while the dashed lines denote the 95% confidence intervals. The 
corresponding ERA-interim and IPCC model results are shown as circles with error bars 
denoting the 95% confidence intervals. 



 

 
 
 

 

Figure 5. Troposphere thermal expansion inferred from GPS RO log(Pdry) data compared with 
surface temperature data from HadCRUT3. 
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